Irene Tamborra, Georg G. Raffelt, Lorenz Huedepohl, Hans-Thomas Janka
Motivated by recent hints for sterile neutrinos from the reactor anomaly, we
study active-sterile conversions in a three-flavor scenario (2 active + 1
sterile families) for three different representative times during the
neutrino-cooling evolution of the proto-neutron star born in an
electron-capture supernova. In our "early model" (0.5 s post bounce), the
nu_e-nu_s MSW effect driven by Delta m^2=2.35 eV^2 is dominated by ordinary
matter and leads to a complete nu_e-nu_s swap with little or no trace of
collective flavor oscillations. In our "intermediate" (2.9 s p.b.) and "late
models" (6.5 s p.b.), neutrinos themselves significantly modify the nu_e-nu_s
matter effect, and, in particular in the late model, nu-nu refraction strongly
reduces the matter effect, largely suppressing the overall nu_e-nu_s MSW
conversion. This phenomenon has not been reported in previous studies of
active-sterile supernova neutrino oscillations. We always include the feedback
effect on the electron fraction Y_e due to neutrino oscillations. In all
examples, Y_e is reduced and therefore the presence of sterile neutrinos can
affect the conditions for heavy-element formation in the supernova ejecta, even
if probably not enabling the r-process in the investigated outflows of an
electron-capture supernova. The impact of neutrino-neutrino refraction is
strong but complicated, leaving open the possibility that with a more complete
treatment, or for other supernova models, active-sterile neutrino oscillations
could generate conditions suitable for the r-process.
View original:
http://arxiv.org/abs/1110.2104
No comments:
Post a Comment