Alejandro H. Córsico, Leandro G. Althaus, Marcelo M. Miller Bertolami, Agnès Bischoff-Kim
DBV stars are pulsating white dwarfs with atmospheres rich in He.
Asteroseismology of DBV stars can provide valuable clues about the origin,
structure and evolution of hydrogen-deficient white dwarfs, and may allow to
study neutrino and axion physics. Recently, a new DBV star, KIC 8626021, has
been discovered in the field of the \emph{Kepler} spacecraft. It is expected
that further monitoring of this star in the next years will enable astronomers
to determine its detailed asteroseismic profile. We perform an
asteroseismological analysis of KIC 8626021 on the basis of fully evolutionary
DB white-dwarf models. We employ a complete set of evolutionary DB white-dwarf
structures covering a wide range of effective temperatures and stellar masses.
They have been obtained on the basis of a complete treatment of the
evolutionary history of progenitors stars. We compute g-mode adiabatic
pulsation periods for this set of models and compare them with the pulsation
properties exhibited by KIC 8626021. On the basis of the mean period spacing of
the star, we found that the stellar mass should be substantially larger than
spectroscopy indicates. From period-to-period fits we found an
asteroseismological model characterized by an effective temperature much higher
than the spectroscopic estimate. In agreement with a recent asteroseismological
analysis of this star by other authors, we conclude that KIC 8626021 is located
near the blue edge of the DBV instability strip, contrarily to spectroscopic
predictions. We also conclude that the mass of KIC 8626021 should be
substantially larger than thought.
View original:
http://arxiv.org/abs/1112.5882
No comments:
Post a Comment