A. Kilcik, V. B. Yurchyshyn, M. Rempel, V. Abramenko, R. Kitai, P. R. Goode, W. Cao, H. Watanabe
We studied bright umbral dots (UDs) detected in a moderate size sunspot and
compared their statistical properties to recent MHD models. The study is based
on high resolution data recorded by the New Solar Telescope at the Big Bear
Solar Observatory and 3D MHD simulations of sunspots. Observed UDs, living
longer than 150 s, were detected and tracked in a 46 min long data set, using
an automatic detection code. Total 1553 (620) UDs were detected in the
photospheric (low chromospheric) data. Our main findings are: i) none of the
analyzed UDs is precisely circular, ii) the diameter-intensity relationship
only holds in bright umbral areas, and iii) UD velocities are inversely related
to their lifetime. While nearly all photospheric UDs can be identified in the
low chromospheric images, some small closely spaced UDs appear in the low
chromosphere as a single cluster. Slow moving and long living UDs seem to exist
in both the low chromosphere and photosphere, while fast moving and short
living UDs are mainly detected in the photospheric images. Comparison to the 3D
MHD simulations showed that both types of UDs display, on average, very similar
statistical characteristics. However, i) the average number of observed UDs per
unit area is smaller than that of the model UDs, and ii) on average, the
diameter of model UDs is slightly larger than that of observed ones.
View original:
http://arxiv.org/abs/1111.3997
No comments:
Post a Comment