Friday, November 4, 2011

1111.0696 (Bennett Link)

Instability of Superfluid Flow in the Neutron Star Core    [PDF]

Bennett Link
Pinning of superfluid vortices to magnetic flux tubes in the outer core of a neutron star supports a velocity difference of ~10^5 cm/s between the neutron superfluid and the proton-electron fluid as the star spins down. Under the Magnus force that arises on the vortex array, vortices undergo vortex creep through thermal activation or quantum tunneling. We examine the hydrodynamic stability of this situation. Vortex creep introduces two low-frequency modes, one of which is unstable above a critical wavenumber for any non-zero flow velocity of the neutron superfluid with respect to the charged fluid. For typical pinning parameters of the outer core, the superfluid flow is unstable over wavelengths $\lambda\lap 10$ m and over timescales of $\sim (\lambda/1 m)^{1/2}$ yr down to $\sim 1$ d. The vortex lattice could degenerate into a tangle, and the superfluid flow would become turbulent. We suggest that superfluid turbulence could be responsible for the red timing noise seen in many neutron stars, and find a predicted spectrum that is generally consistent with observations.
View original: http://arxiv.org/abs/1111.0696

No comments:

Post a Comment