F. Baudin, C. Barban, K. Belkacem, S. Hekker, T. Morel, R. Samadi, O. Benomar, M. -J. Goupil, F. Carrier, J. Ballot, S. Deheuvels, J. De Ridder, A. P. Hatzes, T. Kallinger, W. W. Weiss
Context. The advent of space-borne missions such as CoRoT or Kepler providing
photometric data has brought new possibilities for asteroseismology across the
H-R diagram. Solar-like oscillations are now observed in many stars, including
red giants and main- sequence stars. Aims. Based on several hundred identified
pulsating red giants, we aim to characterize their oscillation amplitudes and
widths. These observables are compared with those of main-sequence stars in
order to test trends and scaling laws for these parameters for both
main-sequence stars and red giants. Methods. An automated fitting procedure is
used to analyze several hundred Fourier spectra. For each star, a modeled
spectrum is fitted to the observed oscillation spectrum, and mode parameters
are derived. Results. Amplitudes and widths of red-giant solar-like
oscillations are estimated for several hundred modes of oscillation. Amplitudes
are relatively high (several hundred ppm) and widths relatively small (very few
tenths of a {\mu}Hz). Conclusions. Widths measured in main-sequence stars show
a different variation with the effective temperature than red giants. A single
scaling law is derived for mode amplitudes of both red giants and main-sequence
stars versus their luminosity to mass ratio. However, our results suggest that
two regimes may also be compatible with the observations.
View original:
http://arxiv.org/abs/1102.1896
No comments:
Post a Comment