Tuesday, November 29, 2011

1102.1896 (F. Baudin et al.)

Amplitudes and lifetimes of solar-like oscillations observed by CoRoT* Red-giant versus main-sequence stars    [PDF]

F. Baudin, C. Barban, K. Belkacem, S. Hekker, T. Morel, R. Samadi, O. Benomar, M. -J. Goupil, F. Carrier, J. Ballot, S. Deheuvels, J. De Ridder, A. P. Hatzes, T. Kallinger, W. W. Weiss
Context. The advent of space-borne missions such as CoRoT or Kepler providing photometric data has brought new possibilities for asteroseismology across the H-R diagram. Solar-like oscillations are now observed in many stars, including red giants and main- sequence stars. Aims. Based on several hundred identified pulsating red giants, we aim to characterize their oscillation amplitudes and widths. These observables are compared with those of main-sequence stars in order to test trends and scaling laws for these parameters for both main-sequence stars and red giants. Methods. An automated fitting procedure is used to analyze several hundred Fourier spectra. For each star, a modeled spectrum is fitted to the observed oscillation spectrum, and mode parameters are derived. Results. Amplitudes and widths of red-giant solar-like oscillations are estimated for several hundred modes of oscillation. Amplitudes are relatively high (several hundred ppm) and widths relatively small (very few tenths of a {\mu}Hz). Conclusions. Widths measured in main-sequence stars show a different variation with the effective temperature than red giants. A single scaling law is derived for mode amplitudes of both red giants and main-sequence stars versus their luminosity to mass ratio. However, our results suggest that two regimes may also be compatible with the observations.
View original: http://arxiv.org/abs/1102.1896

No comments:

Post a Comment