C. Espaillat, L. Ingleby, E. Furlan, M. McClure, A. Spatzier, J. Nieusma, N. Calvet, E. Bergin, L. Hartmann, J. M. Miller, J. Muzerolle
High-energy radiation from T Tauri stars (TTS) influences the amount and longevity of gas in disks, thereby playing a crucial role in the creation of gas giant planets. Here we probe the high-energy ionizing radiation from TTS using high-resolution mid-infrared (MIR) Spitzer IRS Neon forbidden line detections in a sample of disks from IC 348, NGC 2068, and Chamaeleon. We report three new detections of [Ne III] from CS Cha, SZ Cha, and T 54, doubling the known number of [Ne III] detections from TTS. Using [Ne III]-to-[Ne II] ratios in conjunction with X-ray emission measurements, we probe high-energy radiation from TTS. The majority of previously inferred [Ne III]/[Ne II] ratios based on [Ne III] line upper limits are significantly less than 1, pointing to the dominance of either X-ray radiation or soft Extreme-Ultraviolet (EUV) radiation in producing these lines. Here we report the first observational evidence for hard EUV dominated Ne forbidden line production in a T Tauri disk: [Ne III]/[Ne II]~1 in SZ Cha. Our results provide a unique insight into the EUV emission from TTS, by suggesting that EUV radiation may dominate the creation of Ne forbidden lines, albeit in a minority of cases.
View original:
http://arxiv.org/abs/1211.2335
No comments:
Post a Comment