Friday, November 9, 2012

1211.1672 (Martin Huarte-Espinosa et al.)

The Formation and Evolution of Wind-Capture Disks In Binary Systems    [PDF]

Martin Huarte-Espinosa, Jonathan Carroll-Nellenback, Jason Nordhaus, Adam Frank, Eric G. Blackman
We study the formation, evolution and physical properties of accretion disks formed via wind capture in binary systems. Using the AMR code AstroBEAR, we have carried out high resolution 3D simulations that follow a stellar mass secondary in the co-rotating frame as it orbits a wind producing AGB primary. We first derive a resolution criteria, based on considerations of Bondi-Hoyle flows, that must be met in order to properly resolve the formation of accretion disks around the secondary. We then compare simulations of binaries with three different orbital radii (10, 15, 20 AU). Disks are formed in all three cases, however the size of the disk and, most importantly, its accretion rate decreases with orbital radii. In addition, the shape of the orbital motions of material within the disk becomes increasingly elliptical with increasing binary separation. The flow is mildly unsteady with "fluttering" around the bow shock observed. The disks are generally well aligned with the orbital plane after a few binary orbits. We do not observe the presence of any large scale, violent instabilities (such as the flip-flop mode). For the first time, moreover, it is observed that the wind component that is accreted towards the secondary has a vortex tube-like structure, rather than a column-like one as it was previously thought. In the context of AGB binary systems that might be precursors to Pre-Planetary and Planetary Nebula, we find that the wind accretion rates at the chosen orbital separations are generally too small to produce the most powerful outflows observed in these systems if the companions are main sequence stars but marginally capable if the companions are white dwarfs. It is likely that many of the more powerful PPN and PN involve closer binaries than the ones considered here. The results also demonstrate principles of broad relevance to all wind-capture binary systems.
View original: http://arxiv.org/abs/1211.1672

No comments:

Post a Comment