Thursday, November 8, 2012

1211.1535 (E. Paunzen et al.)

A photometric study of chemically peculiar stars with the STEREO satellites. II. Non-magnetic chemically peculiar stars    [PDF]

E. Paunzen, K. T. Wraight, L. Fossati, M. Netopil, G. J. White, D. Bewsher
We have analysed the photometric data obtained with the STEREO spacecraft for 558 non-magnetic chemically peculiar (CP) stars to search for rotational and pulsational variability. Applying the Lomb-Scargle and the phase dispersion minimisation methods, we have detected photometric variability for 44 objects from which 35 were previously unknown. The new objects are all bright stars on the Ecliptic Plane (magnitude range 4.7 < V < 11.7) and will therefore be of great interest to studies of stellar structure and evolution. In particular, several show multiple signals consistent with hybrid delta Scuti and gamma Doradus pulsation, with different periodicities allowing very different regions of the stellar interior to be studied. There are two subgroups of stars in our sample: the cool metallic line Am (CP1) and the hot HgMn (CP3) stars. These objects fall well inside the classical instability strip where delta Scuti, gamma Doradus and slowly pulsating B-type stars are located. We also expect to find periods correlated to the orbital period for CP1 objects as they are mostly members of binary systems. For CP3 stars, rotationally-induced variability is still a matter of debate. Although surface spots were detected, they are believed to produce only marginal photometric amplitudes. So, periods from several hours to a few days were expected for these two star groups. The remaining 514 stars are likely to be constant in the investigated range from 0.1 to 10 days. In some cases, the presence of blending or systematic effects prevented us from detecting any reliable variability and in those cases we classified the star as constant. Finally, we have calibrated the variable stars in terms of the effective temperature and luminosity in order to estimate masses and ages. For this purpose we used specifically developed calibrations for CP stars and, when available, HIPPARCOS parallaxes.
View original: http://arxiv.org/abs/1211.1535

No comments:

Post a Comment